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Abstract--Several authors have considered the extension from vertically upward flow to horizontal flow 
of a model for annular two-phase flow which allows separate descriptions of fiquid droplet deposition and 
entrainment. However, solutions to the equations which result have either not been obtained or have been 
found to be mathematically and physically unacceptable. In this paper it is shown how to obtain 
acceptable solutions. In addition, various physical mechanisms which could improve the model are 
assessed. Of these it is shown that a variable deposition flux could lead to significant improvement between 
theory and experiment. A model for the variable deposition flux is then developed and is shown to give 
results at least in qualitative agreement with known experimental results. The inclusion of the variable 
deposition rate in the governing equations leads to encouraging results for film thickness and film flowrate 
distributions. 

1. I N T R O D U C T I O N  

Whalley et  al. (1974) presented a theoretical model of annular two-phase flow, in a vertical heated 
round tube, which predicted the onset of dryout of the liquid film, and hence the critical heat flux, 
with an accuracy comparable with that of existing correlations. An essential feature of the model 
is the inclusion of separate descriptions of the processes of liquid droplet deposition and 
entrainment. Since that time the model has been developed to the point where it can be applied 
to nuclear reactor rod-bundles and transient flows (Whalley et  al. 1978). 

The success of the model in vertical flow has led a number of authors to investigate its 
applicability to horizontal annular two-phase flow. This flow regime occurs in a range of industrial 
processes, for example in the steam generating plant of nuclear power stations, where the need to 
predict dry-spots is important for the prevention of corrosion. Butterworth (1972), Hutchinson et  
al. (1974) and Fisher & Pearce (1978) have looked at the problem of fully-developed, adiabatic 
horizontal annnular two-phase flow but only Fisher & Pearce (1978) obtained solutions to the 
model equations for liquid film thickness and liquid film flowrate. Although their solutions show 
reasonable agreement between theory and experiment for the liquid film thickness at the top and 
bottom of the tube, the agreement for the distributions of liquid film thickness and liquid film 
flowrate around the tube is less satisfactory. In addition, the above authors found it necessary to 
adopt an assumption about the nature of the flow near the bottom of the tube in order to avoid 
solutions for the liquid film thickness distribution in which "spikes" (i.e. discontinuities in the liquid 
film thickness or its gradient) occurred. 

More recently, Laurinat et  al. (1985) have developed a model for horizontal annular two-phase 
flow in which momentum transfer, in addition to mass transfer, is allowed for. These authors obtain 
solutions to the model equations which do not exhibit spikes at the tube bottom. They also 
conclude that the circumferential interfacial shear stress is primarily responsible for the distribution 
of film thickness over the upper part of the tube. 

The purpose of this work is to re-examine the application of the mass-transfer model of vertical 
annular flow to horizontal annular flow. In particular, the nature of the "spikes" at the bottom 
of the tube is examined, by working with a simplified model, and various mechanisms which could 
improve the agreement between the predictions from the model and experiments are assessed. It 
is found that if a variable deposition rate is incorporated into the model then better agreement 
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between theory and experiment should result. A major part of the paper is, therefore, concerned 
with the development of a model for the droplet deposition flux which can exhibit the required 
variation around the tube circumference. 

Finally, the influence of the model for variable deposition rate on the prediction of liquid film 
thickness and liquid film flowrate distributions is assessed by incorporating it into the simple model 
for the flow derived previously. 

2. F O R M U L A T I O N  O F  T H E  C I R C U M F E R E N T I A L  F L O W  P R O B L E M  

We consider the problem of steady, fully developed, adiabatic, incompressible annular two-phase 
flow through a horizontal tube of radius R, in which droplet deposition and entrainment take place 
(see figure 1). The assumption of steady flow is a gross over-simplification of the real flow in the 
liquid film, which is turbulent and on which a range of surface disturbances propagate. Any results 
obtained from the model equations can therefore only represent mean flow properties. 

With reference to cylindrical polar coordinates (r, 0, z) in which 0 = 0 defines the upward vertical 
and in which all dependent variables, except pressure, are independent of z, the radial and 
circumferential momentum equations, and the continuity equation, for the liquid film may be 
written 

and 

p(V,~-ff~+ = -pgcosO dp l dz 
r dO ~gr r ~90' [1] 

(ov .  v.ov. v:o) , .  ,o 
p V,--~-r +-~----~-+ =pgs inO r O0 r 20r (r~)  [2] 

1 ~ lovo 
- - -  ( r e , )  + - - -  = 0 .  [ 3 ]  
r ~gr r c~0 

In the above equations V, and V0 are the radial and circumferential components of velocity, p is 
the liquid density, p is the pressure, g is the acceleration due to gravity and • is the circumferential 
shear stress. Normal stresses and their derivatives have been neglected. For the thin films which 
occur in annular two-phase flow it is more convenient to work with the coordinates 

x = R O ,  y = R - r ,  [4] 

and with velocities 

u = v o ,  v = - v , .  [5] 

The variables are now scaled by means of characteristic length scales L and 6, and velocity scales, 
U and V, in the x- and y-directions, respectively. We write 

LiQuid film 

/-4" \ 

Figure 1. Sketch of horizontal annular flow. 
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, u v p,  p ~, 6x , x y , _ y  u =-~,  v ' =  ffi [6] x - - Z ,  - ~ ,  ~ ,  ~ - ~  and Vpr' 

being the effective turbulent viscosity for flow in the film. The continuity equation leads to the 
estimate 

6U 
v = T '  ['r] 

and if we neglect terms of order y/R and 6/R compared with unity then [I]--[3] may be written 

~:Lu ~x,+v ~y,jffi-LZ a~x,+~e ~y, Re F ~-~ sin0, [8]t 

(~_)~l ,(~v' ~v') Op' l 0z' g6 
' ffi t- ~-~ cos 0 [9] 

and 
~/4 ' ~/) ' 

+ ~ y ,  = 0. [I01 

In [8] and [9] Re is a Reynolds number for circumferential flow in the film, defined by 

LU 
Re ffi (lax/p'-""~" [I 11 

The boundary conditions to be satisfied by [8]-[10] are 

u'=v'=O at y'ffiO, [12] 

v ' 4 - ~ D - E - -  ,dh" pV u-~ . ;  at y ' = h "  [13] 

and 

p ffip~ at y'=h'. [14] 

Here D and E are the superficial deposition and entrainment mass fluxes, h" ( - -h /6 )  is the 
non-dimeusional local film thickness and p~ (ffipJpU ~) is the non-dimensional local surface 
pressure. The inclusion of the deposition-entrainment term in [13] accounts correctly for mass 
transfer but not for momentum transfer. 

The above equations are not, of course, sufficient to solve the circumferential flow problem; they 
must be coupled to the equations governing the axial flow. However, we postpone discussion of 
the axial flow until solutions for the various distributions are obtained. Instead, we examine the 
above set of equations in detail. 

2. I. The Simplified Problem 
If, in [8] and [9] we assume L ~ R, so that 6/L<<I, then the inertia terms on the l.h.s, may be 

neglected together with the pressure gradient term in [8]. From [8] it is then seen that either 
Re -I ~ g6/U z or Re -m ~ (g~/U 2) (6/L). The first possibility is rejected on the grounds that it leads 
to ~ constant throughout the film and, since the boundary condition ~, = 0 will be imposed later, 
zero shear stress throughout the film would then result. The second estimate of Re-~ is therefore 
adopted and [9] then leads to Re -! ~ ~/L, g6/U 2 ~ I. In dimensional form the circumferential flow 
problem may now be written 

Oy + pg sin 0, [15] 

ap 
o =  + vg cosO, [161 

tBoth x and 0 are sometimes used in the same equation for ease of presentation. 
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v + ~  

~gu t3v 
a-~ + ~y = 0, [17] 

u = v = 0 a t y  = 0, [18] 

D -- E dh 
= u-s-s_ a t y  = h  [19] 

P u x  

and 

P - Ps at y = h. [20]~" 

If  we assume that variations in gas pressure have negligible effect on the flow in the liquid film, 
because PG/P << 1, where Po is the gas density, then we may take p, to be a constant. Equation [16] 
then gives 

p = p, - pg (h - y)  cos 0. [21 ] 

Integration of [17] from y = 0 to y = h gives, using [18] and [19], 

d R[D -- E(h)] 
d-0 (h~2) = , [22] 

P 

where 

ha = f~  u dy [23] 

and we have taken the droplet deposition flux to be constant and assumed E to be dependent on 
h only. From [15] we have 

z~ - % = -- pgh sin 0, [24] 

and if ~ = 0, in other words secondary circumferential flows in the gas phase are ignored, then, 
by taking the local circumferential velocity distribution to be parabolic, we find 

ph2g sin 0 
a = [251 

3/~r 

Finally, combining [22] and [25] we obtain 

d (h 3 sin 0) = 3/~rR d~ ~ [B - e(h)] = F(h), say. [26] 

Equation [26] determines the circumferential film thickness distribution provided that a boundary 
condition for h can be found. The natural boundary conditions require a = 0 at 0 = 0 and at 0 = n 
but these are automatically satisfied by [25] provided that h remains finite. However, if we assume 
that dh/dO sin 0 ~ 0  as 0--.0 then [26] provides the boundary condition 

h = h 0  at 0 = 0 ,  [27] 

where 

hl = F(ho). [28] 

Equation [26] can now be solved numerically for h(e.) but it is found that dh/dO, and sometimes 
h, becomes very large as 0 approaches g (see figure 2). This behaviour is also reported by Fisher 
& Pearce (1978) who refer to the growth in h as a cusp. The actual equation solved by Fisher & 
Pearce appears more complicated than [26] since they assume that the local circumferential velocity 
profile in the film is given by the universal profile. This complication has no relevance to the 
appearance of  cusps, or spikes. Although Fisher & Pearce (1978) overcome this difficulty at the 
bottom of  the tube by effectively stopping the integration well before the tube bottom is reached, 
it is felt essential to understand why spikes occur in the first place. There is nothing in the model 

tSufliees s and w will be used to denote values at the surface o f  the film and at the tube wall, respectively. 
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Figure 2. Typical solution of [26]. 
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equations which makes them more applicable at 0 ffi 0 than at 0 ffi ~, and in fact, by assuming that 
dh/d0 sin 0--,0 as 0--,x, we could obtain a starting condition for the integration of [26] as 

h ffih, at 0 = ~ ,  [29] 

where 

h 3 ffi -F(h , ) .  [30] 

Thus the solution of [26] is not straightforward: it is investigated in more detail in section 2.2. 
It is noted that the order of magnitude analysis leading to [15] and [16] reties on the assumption 

that h and dh/d0 scale as 6 and that 6/L << 1. If solutions to the simplified problem are obtained 
in which either h or dh/d0 is large at the bottom of the tube then this assumption is inconsistent 
and the solution of the simplified problem is meaningless physically. In section 2.5 we consider 
briefly different estimates for 6/L which result in a more complex set of model equations but in 
which it is still assumed that h or its gradient are not large at 0 ffi ~. Here we consider a different 
question: can the addition of a term pgdh/dx cos 0 to the r.h.s, of [15] result in physically acceptable 
solutions (i.e. with dh/dO ffi 0 at 0 -- n) which are not solutions of the simplified problem? There 
may of course be solutions which are not physically acceptable in which dh/d0 is finite at 0 = :t. 
Laurinat et al. (1985) retain this term in their model but find from their numerical solutions that 
it has negligible importance. We show, in the following section, that it is possible to obtain 
physically acceptable solutions to the simplified problem, i.e. with the term pgdh/dO cos 0 omitted, 
and these solutions are similar, at least qualitatively, to those obtained by Laurinat et al. (1985). 
It is therefore not necessary to include this term to achieve physically acceptable solutions. For 
this reason, we have not investigated further the possibility that there are physically acceptable 
solutions to the unsimplified problem which are not solutions of the simplified problem. 

2.2. The Nature o f  the Solutions of  [26] 

Since, at the moment, we have constant D for the circumferential flow problem, we may rewrite 
[26] as 

d 
d---0 (r/sin 0) -- I -f(q), [31] 

where 

(0) = h 3(0)/H3, [32] 

H3 _- 3/~rRD 
p2g [33] 

M.F 13/2.....C 
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and 

E(n)  
f(r /)  = ---if-. [34] 

We now assume that E(~)/D can be written in the simple form 27. At this stage, al l  that can 
be said in defence of this representation is that enables progress to be made in the examination 
of the solutions of[31]. But, it is stressed that this simple form can be given some justification from 
a physical viewpoint (see section 4) and will be retained for future calculations. With this 
simplification [31] can be solved exactly to give 

Writing 

we have 

.,0, ;0(t) = tan a dt. [35] 
sin0 tana(O) 

0 
T = tan ~, [36] 

r/(T) = 1 + T 2 ~r t ~ 
Ta+] J0 1 - - ~  dt' [37] 

which is a more appropriate form in which to examine the behaviour of r/as 0 -*0 and 0 ~n .  For 
small values of 0, i.e. as T-,0,  [37] gives 

1 
r / ( T ) ~ 4 + l ,  2 # - 1  [38] 

and so r /and all its derivatives are finite at 0 = 0. As 0--,n (T-*m) it follows from [37] that 

~ ~ ~ . - r = r + 4 _  1, 2 # 1 ,  

~ ~ B + l o g T ,  4 - - 1 ,  [391 

where A and B are constants .  Thus,  as 0-- .~ ,  we have 

dff d f f s i n 0 ~  if 2<1 ,  
7, d0' d0 

-•0 d~ 
7, -*m,~--~sin0~const  if 2 = 1 ,  

f f - * A - l '  dO -*m'  sin0-~0 if 1 < 4 < 2 ,  

1 d~ dr/ 
- .2 - 1' -~-*const,  ~-~ sin 0-*0 if 2 = 2, 

1 d~/ d f f s i n 0 - * 0  if 2>2 .  
4 2 - 1 '  d0 ' d0  

[40] 

It is therefore clear that only if 2 > 1 can arguments similar to those described above be used 
to determine h, from [30], whereas/10 can be determined from [28] for all (positive) values of 2. 
In addition, it is clear that unless 2 >2, dh/dO will be non-zero as 0-*n and then spikes will occur 
in the film thickness at the bottom of the tube. It is worth noting that a typical solution to the 
unsimplified [26], shown in figure 2, appears to correspond to solutions of the simplified equation 
with 1 <2 <2. 

The parameter 2 is associated with the entrainment process and so a simple physical inter- 
pretation of the above results is that spikes will occur at the tube bottom unless the rate of 
entrainment is large enough to remove the liquid draining down the tube walls. Alternatively, it 
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Figure 3. The secondary flow. 

could be argued that liquid must drain sufficiently slowly to enable the entrainment process to 
remove the spikes. It should be noted, however, that even when conditions are such that smooth 
solutions at the tube bottom are obtained, they will not resemble those observed experimentally 
since, for R > 2, we have 

~o mix -- \h0/m~ - 3, [41] 

i.e. (h,/ho)~ ffi 3 f i ,  which is far smaller than experimentally observed values, which are typically 
of order of magnitude l0 (Butterworth 1972). 

The analysis of the equation governing film thickness has, therefore, explained why spikes can 
occur in the solution but does not explain observed experimental results for (h,/ho). We now look 
at two improvements to the model and assess their influence on this ratio. 

2.3. The Effect o f  Non-zero Interfacial Shear Stress 

It is well known that in turbulent flow over surfaces of unequal roughness secondary flows can 
be set up in a direction such that "turbulence rich" fluid is transported into regions of lower 
turbulence intensity (Hinze 1967). If we consider the liquid film to be a surface whose roughness 
increases with height then it follows that a secondary flow may be set up in the cross-section of 
the tube, in the direction shown in figure 3, giving rise to a non-zero interfacial shear stress z,. 
Laurinat et al. 0985) quote the experimental work of Darling & McManus (1967) in support of 
the assumption that T, is proportional to the product of mean axial interfacial shear stress and sin 0. 
In this work, for mathematical convenience, we assume that 

~, ffi - ~ h  sin O, [42] 

where ~ is a constant. It is acknowledged that the above expression may not b e  capable of 
accurately representing the variation of circumferential shear stress with 0 but it should be 
sufficiently accurate to enable useful qualitative conclusions to be drawn about the influence of this 
mechanism. Substitution of this expression into [24], again assuming a parabolic profile for u, leads 
to 

= 3~.r P g -  ' [43] 

and the corresponding equation for h is 

3~rR(D - E) 
d (h 3 sin O) -- [441 

p p g _ m  

It is unlikely that ~, will be large enough to support the film and so 3p/2 will be less than pg. 
Comparison of the r.h.s, of [44] and [26] shows that the effect of allowing for non-zero ~, is 
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qualitatively similar to that of increasing g~r, and this could lead to slower draining of the film and 
a smooth solution for 7(0) at 0 = ~. However, the maximum value of the ratio h~/h 0 that could 
be obtained from the solution of [44] will still be too small. 

2.4. The Effect of  Varying Deposition Rate 

In horizontal annular two-phase flow it is likely that the deposition rate D is not constant but 
varies with 0 because the entrainment rate varies with 0 and gravity will tend to enhance deposition 
near the tube bottom. Anderson & Russell (1970) and Hutchinson et al. (1974) have looked at some 
of the consequences of a variable deposition rate and the important result for the present analysis 
is that D increases as 0 increases from 0 to 7r. The qualitative effect of varying D can be assessed 
via the simplified [31] but with 

D = D * I I  + y  sin ( 0 ) ] ,  [45] 

where D* replaces the previously constant D. In [45] D* and y are constants and the form of the 
expression for D is chosen because it is mathematically convenient and gives a deposition rate which 
increases from 0 = 0 to 0 = ~. The solution for 7(0) now becomes 

o . t ~ t 

7(0)= sin 0 t~n~/O] f° [1 + ? sm ( ~ ) 1  tan ( ~ )  dt '  [46] 

and has the same behaviour with A as before as far as the appearance of spikes is concerned. 
However, if A > 1 we now have 

= 

and so for sufficiently large values of ~, i.e. a sufficiently rapidly varying deposition rate, it might 
be possible to obtain smooth solutions for the film thickness distribution which give experimentally 
observed values of hJho. Thus, in section 3 we develop a model for variable deposition rate and 
compare its predictions with experiments. Before doing so, however, we comment briefly on 
another approach that has been attempted to overcome the problem of film thickness spikes. 

2.5. The Effect of  Inertia Terms 

In section 2.1 the circumferential flow problem was simplified by assuming 6/L ~ Re-I<< 1 and 
it was seen that this could lead to solutions in which the film thickness increased rapidly near 0 = ~. 
Under these circumstances the approximations are not self-consistent and so we now look at two 
different estimates for the parameter ~/L. 

2.5.1. Re>>1, ~/L ,,,Re -t/: 

The above conditions would only hold near 0 = 7r and the momentum equations [8] and [9] would 
then be, in dimensional variables, 

( Ou ~u ) Op Ot 
p U-~x +v~y = - O x  +~y + pgsinO [481 

and 

0 = ~ + pg sin 0. [49] 

These equations can be manipulated in the same way as [15]-[17] with boundary conditions 
[18]-[20] and the assumptions that t, = 0, u is parabolic and p, is constant. The following equations 
for h and ~ result: 

3p~rR6 F*R~(D - E) 
ghR sin 0 + 

dh hp p [so] 
dO = F~ 2 + gh cos 0 
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and 

where 

and 

R ( D  - E )  _ dh 
p u 

dO h ' 
[51] 

3 
F* = 2F - - [52] 

2 

6 
~ /,12 r dy  = [s3] 

The boundary conditions for [50] and [51] are 

~ = 0  at 0 = 0  and 0 = ~ .  [54] 

Satisfactory solutions to the problem posed by [50], [51] and [54] have not been found. However, 
it is felt that the improvement to the model, due to the inclusion of  inertia terms, will not be as 
great as that due to the inclusion of a variable deposition rate, for the following reason. The scaring 
required for the equations to hold is only valid near 0 = ~, and so the inclusion of inertia terms 
will only influence the solution in that region. A variable deposition rate will influence the solution 
right around the circumference. 

2.5.2. 6 / L  ~ I 

Another possible scaling is that, near 0 = ~t, b/L ~ 1. In this case the inertia terms in both the 
circumferential and radial equations have to be retained. The numerical solution of the resulting 
system of equations is likely to be more difficult than in section 2.5.1 and so no solutions have 
been attempted. In addition, it is necessary to model more accurately the effects on momentum 
transfer of droplet deposition and entrainment. For these reasons it is concluded that the major 
gains, if any, from the inclusion of inertia and pressure gradient terms are likely to come from the 
approach of section 2.5.1. 

3. A MODEL FOR THE DROPLET DEPOSITION RATE 

In his review of droplet mass transfer in annular two-phase flow Hewitt (1978) describes two 
mechanisms by which droplets in the gas core may deposit on the fiquid film on the tube waft. 

Firstly, the droplets may redeposit under the influence of a succession of interactions with gas 
phase turbulent eddies. A model for this process has been developed by Hutchinson et al. (1971) 
who show that the overall process may, under certain circumstances, be described by a diffusion 
equation. Hutchinson et al. (1974) have shown how to extend this model to horizontal annular flow 
but, for reasons to be given below, we do not pursue this approach here. 

Secondly, the droplets may deposit as a direct result of the velocity they acquire on their ejection 
from the liquid film. Photographic evidence shows that this is the primary deposition mechanism 
for droplets with diameter greater than about 150/~m in vertical annular flow (Whalley et al. 1979). 

The deposition process is, then, in general due to a combination of  these two mechanisms. Chang 
(1973) argues that, in horizontal annular flow, the second mechanism is chiefly responsible for the 
deposition of  droplets with diameter less than about 25/tin, whereas in the work of  James et al. 

(1980) it is found that a good description of the unidirectional deposition data in vertical annular 
flow can be obtained if it is assumed that only about 30% of the droplets deposit via the second 
mechanism, the remaining 70% depositing via the diffusion mechanism. One explanation for this 
apparent discrepancy may be that in horizontal annular flow most of  the droplets are entrained 
from the region near the bottom of the tube where the film is typically much thicker than those 
found in vertical annular flow. Consequently, the size of the droplets generated may be larger 
and the second deposition mechanism dominant. It should also be noted that Hutchinson et al. 
(1974) have shown that the effect of gravity on the diffusion mechanism is small, from which it 
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Figure 4. Definition sketch of  horizontal annular flow showing the coordinates (X, Y) Oxy and x. 
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Figure 5. Definition sketch for ejection angles ¢ and p. 

may be inferred that the required variation of deposition flux around the circumference could not 
occur if diffusion was the dominant method ofdeposition. For these reasons we therefore proceed on 
the assumption that the sole mechanism responsible for deposition in horizontal annular flow is the 
second mechanism; thus the work that follows is an extension of that of  Andcrson& Russell (1970). 

3.1. Mathematical Formulation 

We assume that droplets are emitted from a continuous distribution of line sources around the 
tube periphery, follow a parabolic trajectory solely under the influence of gravity, and subsequently 
deposit on the tube wall at some downstream location. In reality the sources for droplet 
entrainment are at the tips of roll-waves which propagate along the film. However, to facilitate 
the analysis we neglect the film thickness, for the purposes of deriving an expre~on for variable 
deposition rate, and assume that the droplets originate and depor t  at the tube wall. The notation 
0 will refer to the angular location of the point of deposition and X (or ~ ffi n - X) to the location 
of the line source, as shown in figure 4. 

From the symmetry of the problem about the line 0 ffi 0, n it follows that if 0 is allowed to vary 
over a range of length 2n, a range of length n need only be considered for X. For every line source 
we assume that the droplets are emitted at the same speed V along trajcctori~ which make angles 

and ~ with the planes Oxz and Oyz, respectively, at the point of ejection (see figure 5).t While 
it is assumed that V is constant, the angles ~ and/~ are taken to be independent random variables 
distributed uniformly on (0, ~o), ( - ~0, ~o), respectively. The joint probability density function of 

and ~ is therefore 

1 
P(~ '~)=2%/~0 '  ~¢ (0 ,%) ,  ~¢( -P0 , /~0) ,  

= O, otherwise. [55] 

tNote that the coordinate direction x defined in section 3 is in the opposite direction to that defined in section 2. In 
addition, no confusion should arise over the use of  the previously defined ~jmbols p and V. 
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If the probability density function for deposition at 0 from a line source at X, p(0;X) can be found 
and if the strength of the line source at X, E(X) is known, then the deposition rate at angle 0, D(O) 
will be given by 

;:" f: D(O) = E ~ ) p ( O ;  X) dx = E(Z) [p(0; X) + p(2~ - 0; X)] dx, [56] 

from symmetry. The problem of specifying D(O) therefore reduces to that of finding p(O; X). 
Since we are only interested in fully developed flow, the axial motion of the droplets need not 

be considered in detail and V may be taken to be approximately equal to the mean gas phase 
velocity. 'The only force acting on a droplet in the plane of the cross-section, Oxy, is gravity and 
so the position (X, Y) referred to cartesian axes fixed at the tube bottom, of a droplet ejected from 
a line source at )C = x - ~  after a time t is given by 

X = R sin ~b + Vt cos • sin/] cos ~ - Vt sin • sin ~b, [57] 

Y ffi R(1 - cos ~b) + Vt sin • cos ~ + Vt sin ~cos 0c sin ~ -gt--~ [58] 
2"  

Experimental evidence suggests that ~ and ~0 are small enough to write 

sin a ~ 6, cos ~ ~ 1, sin/] ~/1,  [59] 

and since, when a droplet reaches the boundary of the tube 

we have 

Hence 

and 

where 

X=RsinO, Y=R(I+COs0), [60] 

R sin 0 = R sin ~ + VBt cos ~ - Vo{t sin ~, 

gt 2 
R cos 0 = - R cos ~b + Vo~t cos t~ + V/Jt sin ~ 2 " 

R[1 + cos(0 + #b)] p Vt cos + 
Vt R 

[61] 

R sin(O + ~ )  pVt sin 
P --- Vt ÷ R ' [62] 

gR 
= 2 V 2" [63] 

The joint 
X( ffi ~ - ~ ), p(O, t; X), may now be found from 

probability density function for deposition at 0 at time t after ejection from 

p(O, t ;  X)  = I J I p ( ~ ,  P ) ,  [64] 
where the Jacobian J is given by 

06 0/~ 0 p  630~ R 2 
J = 00 ~t 00 0t = ~ [1 + cos (O + ~,)] p cos O [65] 

• t 

Thus 

1 f R 2 
p(o, t; x)  = 2 [1 + cos (0 + 4,)] 

over some region of (0, t) space. 
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3.2. The Limits in (0, t) Space 
The region of  (0, t) space over which p(O, t; Z) is non-zero is determined from two considerations. 

First, the fact that p(a, fl) is zero outside the rectangle 0 < ~ < ~0, - fl0 < fl < fl0 leads to the 
following limits: 

(i) u < ~0 requires 

R { ~/~2 4# cos ~ [1 + cos(0 + ~)]} < t 
2#V cos ~b ~ o -  - 

R {a0 + ~/a02 - 4 #  cos~b [1 + cos(0 +~b)]} [67] 
< 2#V cos ~b 

if cos ~ > O, and 

2#V cos ~b ~o - ~=2 _ 4# cos ~b [1 + COa(O * ~)] < t [681 

if cos ~b < 0; 

(ii) ~ > 0 requires 

R 2 
t 2 <  

# V 2 cos ~b 

ifcos ~b < O; 

and 

(iii) - fl0 < fl </30 requires 

2#Vsin4~ f l o - ~ / f l ~ - 4 #  sin4~ sin(O + ~ )  < t 

[1 + cos(0 + ~)] [69] 

< 

The above inequalities require 

and 

RE 2 # V  sin ~b flo + ~/f lo 2 - 4/z sin ~ sin(O + ~b) . 

sin ~b sin(O+ ~b) ~ fl°2 
4 #  

COS ~ [1 + COS(0 + ~ ) ]  < 4---~ ; 

[70] 

[71] 

Y = R(1 - cos ~b) + (V~ cos ~ + Vfl sin ~b)s - m 

Elimination of a and fl between [61], [72] and [73] gives 

X = R sin ~b + s R (sin 0 - sin ~b), 
t 

Y= R (1 - cos 4,) + R (cosO + cos,/,)+ 

tChang (1973) implicitly assumes that the cubic has only one real root, which is not necessarily true. 

[72] 

g s  2 
[73] 

2 "  

[74] 

[75] 

X = R sin ~b + ( Vfl cos ~ - Va sin #b) s, 

for values of  0 and ~ which do not satisfy the above inequalities, p(O, t; X) is zero. 
The second set of  restrictions stems from the fact that, while the elimination of  0 from [61] leads 

to a cubic equation for t which may have three real roots (corresponding to droplet trajectories 
which cross the tube boundary twicet), the physical problem requires that a droplet never leaves 
the interior of  the tube. At any time st(0,  t) the position of  the droplet is 
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The droplet will never leave the interior of  the tube if 

X2d-(Y-R)2<~R 2 V $c-(0, t ) ,  [76] 

which leads to 

~2 V4t2S2S [ 2 ~  V2R2t (COS0 =l-COS~) 'J¢ ' /~  2 V 4 t  3] 

+2R4[1  +cos (0  -t-~b)]-1-2/~ V2R2t2COS~ >10 VSc-(O,t). [77] 

The restrictions on t, given 0 and ~, that emerge from this equation are given below, but, because 
of  its complexity, their derivation is given in appendix A: 

(i) for cos ~ > 0 we require 

4 R  2 . 
s,n ~ ) ,  0 e ( -  n - ~b, g [78] 

R: l+cos(0+~)( n-~n3~ ) 
t 2 < V------ 5 0~ [79] 

/z cos 0 ' 3 ' ' 

4 R 2 "  ~ 0 2"----~ ) ,  ( " 3  - - - - ~ ,  ~ - ~ ) ;  [80] t 2 < Sm z \1 +s in  0e 

0 e ( -  2n + ~ , 3 ~  -3n)andOc-(n-dp, ep), [81] 

and 

(ii) for cos ~b < 0 we require 

R:  [1 + cos(0 + ~)] 
t : <  

/~ V 2 cos 4~ 

4R2.  ( d ~ - O ) { . .  O+dp'~ ( ~t-dp) 
t 2 < ~ v - i S m ~ ~ l - s m ~ } ,  0¢ 3 ~ - 3 n , - ~  [82] 

) t 2 < V--- ] , - -  _ _  . ~u cos 0 3 ' ~ -- ~ [83] 

The probability density function p(O; X) is now given by 

frL J 1 { R 2 [ I + e ° s ( 0 + 4 0 ]  I rU 
P(0;Z)  = P(O't;x)dt =2%f10 2 V2t 2 /z cos0  logt  , [84] 

)rL 

where Tu and TL are the appropriate upper and lower limits for t. In section 4 we shall require 
the mean time of  flight of  particles ejected from a line source at X, t'(X), and this is given by 

fo;; , t (X) = t p (0, t; X ) dt dO = 2 ~o flo V 2 t - tz cos Ot dO, [85] 
L )rL 

where the range of  0 is ( - rc - 4~, n - 4~) for cos 4~ > 0 or ( - 2n + ~, ~b) for cos ~ < O. 

3.3. The Probability Density Function p(O; X ) 
In this section some of  the properties of  p (0, X) are illustrated by means of  examples. In figures 

6-10 we plot p (0 ;X)  for X =0° ,  30 °, 90 °, 120 ° and 180 ° with ~offi~o= 1.5 ° and/~ =2.65 × 10 -s 
(these figures correspond to a gas velocity V ffi 54.4 m/s, and tube radius R = 16 ram) and the 
following features can be seen. There is a peak in the probability density function at +90  ° from 
the location of  the source and, when the source is in the lower half of  the tube, there is a singularity 
at the source itself. This singularity occurs because the upper limit for t, given by [80], is non-zero 
whereas the lower limit, given by [67], [68] or [70] is zero. There is then a logarithmic singularity 
in p (0; ~), as can be seen from [84]. In figure 11 we see that the effect of  unequal ~0 and/~0 is to 
remove the peak at - 90 ° from the source and to change the overall shape of  the probability density 
function (cf. figure 6). 



186  P . w .  JAMES ez a/. 

o~ 

O2 

Ol 

/ Source 
O.0~- -  I I I , I L , I 

60 120 180 240 300 360 
8 (deC) 

Figure 6. The probabil ity density function for a 
source at X = 0 ° (~e ffi .8o ffi 1.5 °, p = 2.65 x 10-5). 
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Figure 7. The probabi l i ty  density funct ion for  a 
source at X : 300 (% = .80 = 1.5 °, P : 2.65 x lO-S). 
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Figure 8. The probabil i ty density funct ion for a 
source at X = 90° (% = .80 = 1-5°,/J ffi 2.65 x 10-5). 

Q3 

L.oganthm¢ smgutarlty A 
02 ot sot~:. / \ 

0.1 

Source 
o.o I t I I I I 

0 60 120 180 240 300 360 

8 (dec) 

Figure 9. The probabifi ty density funct ion for a 
source at ;( : 120 ° (% : ~o = 1.5°, P : 2.65 x 10-s). 

In figure 12 we plotp(0;  X) for X = 180° with oh = fl0 = 1-5° but # = 2.65 x 10 -7,  i.e. reduced by 
a factor of  100. This approximates the zero-gravity case and therefore the plot of  p(0;  X) with X = 0 
should be the same, as indeed it is. When p = 0, it is possible to obtain the exact results 

p ( 0 ) =  oh 1 
4//ol  +cosO '  Oc--(O,O*), 0¢(27t - - 0 * , 2 n ) ,  

_ //o 1 Oc-(O*,  2 ~  - 0 " ) ,  
4oh I - cos O' 
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Figure 10. The probabi l i ty  density funct ion for  a 
source at ~ : 180 ° (% : .80 : 1 .5  °,  # = 2 . 6 5  x 1 0 - s ) .  
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Figure 11. The probsbi l i ty  dem~ty funct ion 
for a source at Xffi120 ° ( a o = l . 5  °, . 8 0 = I  °, 

p ffi 2.65 x 10-5). 

[86]  
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Figure 12. The probability density function for a 
source at  x = l S 0  ° o r  X = 0  ° ( ¢ 0 = ~ 0 = 1 . 5  °, 

, # = 2.65 x 10-~). 
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Figure 13. Reduced deposition D'(O) for various ~, 
fie and p. 

where 

0 *  = tan -~ ~ ,  [87] 
~o 

and it is readily seen that this expression closely approximates the curve shown in figure 12 when 
• o = ~o. A check on the results so far is that 

f:p(O ) dO = 1, [88] X 

for all X and a numerical integration confirms that this is the case for all the examples above (indeed, 
a quick check can be obtained by noting that if p (0; X) were constant then it must take the value 
1/2~ = 0.16 approx., and all the curves illustrated are distributed around this value). Finally, in 
figure 13 we illustrate a reduced deposition rate D'(O), defined by 

D'(O) = ~ [p(0; X) + p ( 2 n  - 0; X)] dx, [89] 

for different values of  ~o, ~0 and p as shown. It is seen that the theory predicts the 'S'-shaped curve 
observed experimentally (Anderson & Russell 1970; Chang 1973) and that the effect of  reducing 
p (i.e. gravity) is to produce a constant value of  D '  ~ 1, which is what we expect. 

4. THE E F F E C T  OF V A R I A B L E  D E P O S I T I O N  RATE D(O) 

The results of  the last section are now incorporated into the circumferential flow model, given 
by [26], but with D(O) replacing the previously constant D. The scaling factor H 3, defined by [33] 
is now redefined as 

P g  

where E0 is a constant with the dimensions of  entrainment flux, and we introduce a non- 
dimensional film thickness 7(0) as before, [32]. Finally, if we again assume that the non- 
dimensional entrainment rate may be written as a constant, ~, times r/(0) then we arrive at the 
following equation for 7(0): 

d ~ :  
d'-0 [T/(0) sin 0l + ~ ( 0 )  -- ~ p(O; X) 17(3[.) dx. [911 

This assumption is not essential for the solution of  [91] but it does allow an estimate of  ~ to be 
made (from the analysis of  section 2) for which acceptably smooth solutions exist. The assumption 
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is equivalent to E(h)och 3, which is not unreasonable. In fact Fisher & Pearce (1978) show that the 
correlation of Hutchinson & Whalley (1973) may be written in the form E(h)och 2 x (axial shear 
stress) 2 and so, if the axial shear stress increases as x/~, the assumption is valid. However, it is not 
claimed that the assumption/s exact but merely that it is reasonable; the parameter ;t is estimated 
from the analysis of section 2, not from experimental data. 

Equation [91] is a linear integro-differential equation which is homogeneous in r/(0) and so we 
apply the (arbitrary) boundary condition 

r/(0) = 1. [92] 

The proof that non-zero solutions for t/(0) exist and are unique is given in appendix B and details 
of the numerical scheme employed to solve [91] are given in appendix C. 

The model now contains five "free" parameters; 2, ~,/~0 and any two of/~T, H~ and E0. The 
requirement that global mass balance must be satisfied, i.e. the requirement that the sum of 
entrained liquid and liquid flowing axially in the film must equal the known total mass flux, will 
effectively reduce this number to four. In section 2 it was shown that when D(O) is constant, [31] 
has solutions for t/(0) with no spikes at 0 = x only if 2 > 2. A similar restriction appears to hold 
for [91] and so we fix 2 = 2.2. Higher values of 2 could be used and will result in solutions for 
~/(0) with no spikes at 0 = n. However, the profile h(O) is not very sensitive to values of 2 in the 
range 2-3 and the smaller we can make 2, consistent with physically acceptable solutions, the better 
the agreement with experiment, as discussed in section 4.3. 

We are now left with three parameters ~ ,  fl0 and/zT, say, to specify before predictions of film 
thickness and film flowrate distributions can be made and appeal to a result from vertical annular 
flow to reduce this number to two. 

4.1. Restrictions on ~o and flo f rom Vertical Annular Flow 

In the case of vertical annular flow, in which gravity does not affect droplet trajectories in the 
plane of the tube cross-section, and there is axial symmetry, the mean time of flight/'(X) will be 
independent of X. From [61], after eliminating 0 and setting/~ = 0, we find 

2 ~,R 
t = V (0d + p2)" [93] 

The mean time of flight, ~ is therefore independent of X and is given by 

~= t(a, f l)p(a, fl) dfl d~ = ~01og 1 +~-~ l+2~0 tan - '  . [94] 

In fully developed vertical annular flow the concentration of  droplets in the gas core, C, may 
be related to the (constant) entrainment rate E, and ~, as 

2 
C = ~ E ~. [95] 

Whalley et al. (1974) show that in fully developed vertical annular flow it is possible to relate E 
to C via a constant, k, known as the mass transfer coefficient, as follows: 

E = k C. [96] 

Equations [94]-[96] can now be combined to give 

+ ~,0/ . 2k 

In a given flow V and k will be known (k = 0.15 m/s for an air-water system at atmospheric 
pressure) and so fl0 can be predicted in terms of ~ .  

Although the above relationship between ~ and/~0 has been derived from a consideration of 
vertical annular flow, we assume that since the mechanisms by which droplets are ejected into the 
gas stream are similar in horizontal and vertical annular flows, the relationship holds for horizontal 
annular flows also. 
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4.2. Further Assumptions and the Solution Procedure 
Two further relationships will now be proposed which enable predictions of the film thickness 

and film flowrate to be made. 
Firstly, we assume that the rate of entrainment at the top of the tube (0 --- 0) is the same as that 

which would be predicted from the correlation of Hutchinson & WhaUey (1973) for a vertical 
annular flow with the same film thickness and shear stress as that which occurs at the top of the 
tube. This assumption is reasonable because the observed film thickness distributions near the top 
of the tube do not vary very much around the circumference and are of similar magnitude to those 
found in vertical annular flows. The assumption would not be valid near the tube bottom (0 = n) 
where the film thickness varies rapidly around the circumference and is typically larger than those 
on which the correlation of Hutchinson & Whalley (1973) is based. Fisher & Pearce (1978) point 
out that a reasonable approximation to the correlation of Hutchinson & Whalley (1973) is 

52.2 ~ (0) h2(0) kg/m 2 s, [98] 
E(O) = ~2 

where ~A(0) is the (axial) interfacial shear stress at location 0 and ¢ is the surface tension. Fisher 
& Pearce (1978) also give a correlation for ~A(0) in terms of h(O), strictly only valid for tubes of 
31.8 mm i.d., and it is this correlation which is used in the present work (see below). The above 
assumption leads to the equation 

E(0) = 2 E0, [99] 

when it is noted that r/(0)= 1. 
The second, and final, relationship required for the solution of [91] is obtained from the 

assumption that the average ejection velocity of droplets along the radius (direction O y in figure 
5) is proportional to the local turbulent intensity at the point of ejection. Taking the average 
ejection velocity to be approximately equal to V~o, we may therefore write 

Ku*  
~ =  V '  

where u* is the friction velocity at the interface, defined by 

[ 1 ~ ]  

[101] 

and K is a constant which we expect to be of order of magnitude 1. The interfacial shear stress 
is found from the correlation of Fisher & Pearce (1978): 

ZA(O)=%[I + ~ ~ - ~ ( 0 ) ] ,  h(0) ~< 280 #m 

= 2.6 %, h(O) > 280 #m, [102] 

where z0 is the wall shear stress defined by 

% = ½ Poc V~cfoc, [103] 

PGC is the gas core density defined by 

Vc, c is the gas core velocity defined by 

pcc = po + (7, [104] 

Gu~ 
v ~ =  c '  [105] 

where GLE is the entrained liquid mass flux, and fGC is the gas core friction factor defined by 

fGc -- 0.079 Re~/ ' ,  [106] 

where 

2 VocR 
Rec~ = Pc, c, [107] 
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being the gas dynamic viscosity. Pearce (1977) arrives at the above correlation by taking GLE 
to be one half of the total liquid mass flux GL. We shall use this correlation for ZA(0) in the 
calculations described below but for simplicity in the calculation of ~0, which we have implicitly 
assumed does not depend on 0, we take TA(0) to be constant in [I01] and equal to ½PG V2foc • This 
leads to 

• 0 ffi K J f o c .  [108] 

The constant K is estimated from the experiments of Whalley et ai. (1979) to be about 0.57. 
The calculation of film thickness and film flowrate distributions can now be carried out via the 

following steps: 

(i) given the physical properties, tube radius and liquid and gas mass fluxes, 
calculate ~o as described above; 

(ii) calculate ~)0 from the vertical flow constraint given by [97]; 
(iii) with ,~ = 2.2 solve [91] for ~/(0); 
(iv) compute t'(X) from [85]; 
(v) guess a value of GLE, 

(vi) compute E0 from the relationship 

,tEo t'(X) ~(X) dx = C; [109] 

(vii) evaluate H 3 = h 3 (0 ffi 0) from the first of the assumptions described in this 
section, and hence obtain the profile h(O); 

(viii) evaluate the local axial film flowrate F^(0), defined by 

f;° F^(O) = PL U(y, O) dy, [1101 

where U(y, O) is the local axial liquid velocity,t and hence obtain the liquid 
film mass flux, GLF, from 

GLF = ~-~ F^ (0) dO; [ 111 ] 

(ix) obtain a new estimate of GLE from global mass balance, GLF-F GLE = GL, 
where GL is the (known) total liquid mass flux, return to step (vi) and iterate 
to convergence. 

4.3. Comparison with Experimental Data 

In figures 14-17 the predicted and experimentally measured film thicknesses are compared. The 
data are those of Butterworth (1972) and Butterworth & Pulling (1974) who carried out 
experiments with air and water in 31.8 mm i.d. horizontal tubes. The physical properties for these 
runs were taken to be #L (the liquid dynamic viscosity)ffi 10-3N/ms, /~G = 1.81 X 10-SN/ms, 
p ffi 103 kg/m 3, o = 7 2  × 10 -3 N/m and g ffi 9.81 m/s'. 

The gas density, liquid mass flux and gas mass flux for each run are given in the figures. It can 
be seen that the predictions are generally in good agreement with the experimental data for 
maximum and minimum film thickness and, moreover, the variation of h with 0 is similar to that 
observed. Calculated values of ~0 and/~0 are also given and are of the order of magnitude we would 
expect. The calculated entrained liquid mass fluxes are also given and it is seen that while they are 
in reasonable agreement with experiment, they are consistently high. Since it is extremely difficult 
to obtain accurate measurements of the entrained liquid mass flux and in view of the approxi- 
mations employed in the model for entrainment flux, these comparisons do not provide strong 
evidence for or against the model. Nevertheless, since the entrained liquid mass flux depends on 
A, the above comparison suggests that this parameter should be chosen to be as small as possible, 
subject to the constraint that physically acceptable solutions to the model equations are obtained. 

?We assume that the well-known logarithmic wall velocity profile may be applied locally at 0. 
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Figure 14. Comparison of theoretical and experi- 
mental film thickness profiles. Buttvrworth (1972) 
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Figures 18 and 19 show similar comparisons for the data of Fisher & Pearce (1978) and it is 
again seen that the model produces reasonable film thickness profiles. In figures 18 and 19 we have 
also shown the predictions obtained by Fisher & Pearce (1978) and, although it could be argued 
that they predict the maximum and minimum film thicknesses quite well, the present model 
accounts for the variation of h with 0 more correctly. It is seen from figures 18 and 19 that the 
model predicts a more uniform film thickness distribution than that of Fisher & Pearce (1978). 
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Figure 16. Comparison of  theoretical and experi- 
mental film thickness profiles. Butterworth & Pulling 
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Figure 18. Comparison of  theoretical and experi- 
mental film thickness profiles. Fisher & Pearce 
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Figure 19. Comparison of  theoretical and experi- 
mental film thickness profiles. Fisher & Pearce 
(1978) data: G L = 130 kg/m 2 s, G G = 60 kg/m 2 s, PG = 
1.25 kg /m 3, GLE (theory) = 21 kg/m 2 s, ~ = 1.4 °, 
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Since these authors assume a uniform deposition rate whereas the present model uses a variable 
deposition rate, in which more liquid is deposited at the bottom of the tube, the results seem at 
first sight surprising. The explanation is that there are differences, other than those concerning the 
deposition process, between the two models. Differences in the predictions of the two models 
cannot, therefore, be attributed to differences in the deposition process alone. In particular, Fisher 
& Pearce (1978) evaluate the film thickness distribution in the lower half of  the tube in a completely 
different way from the present model. 

Finally, in figure 20 we compare the axial film flowrate distributions from the experiments of 
Fisher & Pearce (1978) with the predictions of the present model. The agreement between theory 
and experiment is rather poor and, since the prediction of film thickness is quite reasonable for 
this set of conditions (figure 19), the result is rather surprising. One possible explanation is that 
the assumed local axial velocity profile (in this work the usual logarithmic profile) is in error. 
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Figure 20. Comparison of  theoretical and experimental film flowrates. Fisher & Pearce (1978) data: 
G L = 130kg/m2 s, Go = 60 kg/m= s, po = 1.25 kg/m 3. 
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5. CONCLUSIONS 

The major conclusions to be drawn from this work are as follows. 

1. The governing equations for the circumferential flow are capable of producing 
acceptable solutions (i.e. solutions with no spikes at the tube bottom) if the rate 
of entrainment is sufficiently large (or, equivalently, the rate of liquid film drainage 
is small enough). 

2. The inclusion of inertia terms and interfacial (circumferential) shear stress in the 
model are unlikely to significantly improve the agreement between theoretical and 
experimental values of the ratio (hdho) whereas the inclusion of a variable 
deposition rate is. 

3. A model for the variable deposition rate, based on the assumption that droplets 
are ejected from the liquid film and execute a parabolic trajectory under the 
influence of gravity, shows at least qualitative agreement with observed experi- 
mental trends. 

4. The incorporation of the model into the equations governing the circumferential 
flow enables reasonable predictions of the liquid film thickness distribution to be 
made. 

Finally, it is appropriate to comment briefly on the model of Laurinat et al. (1985), who identify 
interfacial circumferential shear stress and normal Reynolds stress (which models oscillations in 
the circumferential film flow) as important mechanisms in horizontal annular flow, with the 
entrainment-deposition mechanism playing a secondary role. By adjusting the parameters which 
characterize the interfacial circumferential shear stress and normal Reynolds stress these authors 
obtain excellent agreement between theory and experiment. However, as stated by Laurinat et al. 
(1985), the relegation of the entrainment-deposition mechanism to a secondary role depends on 
the value taken for the mass-transfer coefficient characterizing the mechanism. In the present 
model, the value of the parameter characterizing this mechanism is large enough for smooth 
solutions for film thickness distributions to be obtained without the need for interracial circum- 
ferential shear stress or normal Reynolds stresses. Lin et al. (1985) conclude that the 
deposition-entrainment process and interfacial circumferential shear stress are both important. We 
conclude that further improvements to the modelling of horizontal annular flow, and the 
establishment of the importance of the contributing mechanisms, can only take place when 
experimental data for the variation with 0 of certain variables, notably entrainment flux, interfacial 
circumferential shear stress and mean axial velocity profiles, are available. 
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APPENDIX A 

Derivation of  Bounds on (0, 0 

Let g(s) be defined by 

g(s) = #2 V 4 t 2 S 2  _ s(2 # V 2 R 2 t(cos 0 + cos ~) + #2 V 4 t 3) 

+2R4[1 + cos(0 + ~ ) ] + 2 #  V2R2t2cosdp. 

We require that g(s) satisfies the inequality 

g(s) >1 O, 

for s in the interval (0, t). 
g(s) has a minimum at s = s*, the root of dg/ds = 0, so that s* is given by 

R 2 (cos 0 + cos ~) 
S * = 2 +  # V2t 

We consider first the case (cos 0 + cos ~ ) >  0. If s * <  t, then we must 
Alternatively, if s* > t then we must have g(t) ~ O. Now 

g( s* )  = R '  (sin 0 - sin ~)2 + / a  V' R '  t'  ( cos  # - cos  0)  

and so 

g(s*) >i 0 

(whichever is positive); 

g(t) = 2 R 4 [I + cos(0 + ~)] - 2 # V 2 R 2 t '  cos 0 

4 R  2 .  0 - ~ / .  0 + ¢ ,  'X 
- - - ~ - r  ) ,  if t 2 ~ ~ ' 5  sin ~ ~ksln 1 

#2 V 4 t 4 

[A.l] 

[A.2] 

[A.3] 

have g(s*) >i O. 

- - ,  [A.4] 

[A.5] 

[A.6] 
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so that 

We thus have the following: 

then we need 

and if 

then we need 

R 2 [I 4" COS(0 4" ~) ]  
g(t) >i 0 if t' <~ • [A.7] 

p V2 cos 0 , 

2 R '  (cos 0 4" cos #b) 
s * < t  if t ' >  V2 [A.8] # 

if t '  < 
2 R' (cos 0 + cos ~) 

F V' 

I 

R' [I 4" cos(0 4" ~)] t' < [A.9] 
/~ V' cos0 

f2> 2 R' (cos 0 + cos ~) 

4 R  2 . ~ 0 - 0 [ "  ~ 0 + O - 1 ) "  
t'  < sm t, sm [A.10] 

/ 

Secondly, we consider the case (cos 0 + cos O) < 0. For this case if s* i> 0 then we must have 
g(s*) >I O. Alternatively if s* < 0 then we must have g(0) >t 0. 

g(0) == 2 R 4 [I 4- cos(0 + ¢~)] 4" 2 ~t V 2 R' t' cos ¢. 

If c o s O > 0  then g(O)>OVt but 
cos(0 + ¢)]}(~v' cos ~)]: 

s*>0 if 

We thus have the following: 

then we need 

when cos ~ < 0, and if 

then we need 

i f  

t 2 < 

t ' >  -- 

[A. l l ]  

if  c o s O < O  then g (O)>O only if t ' < ~ - { R  2 [ 1 +  

2 R' (cos 0 + cos ~) t' > - [A.12] 

/ '2< -- 2 R 2 (cos 0 + cos ~) 
/.t V 2 

R 2 [I + cos(0 + ~)] 

v~cos 4, 

2 R2 (cos 0 + cos ~) 
F V2 

4 R  2 . 0 - - 0 [ .  0 + 0  ) 
t = < ~ - ~ s m ~  ~s,n---~--  ::l: 1 . 

[A.13] 

tA.141 

APPENDIX B 

Existence and Uniqueness of Solutions to [91] 
Equation [91] can be integrated to give the linear homogeneous integral equation 

~: K(O; X) ~(Z ) dz, ~(0) I 

subject to the boundary condition 
~(0)= 1, 

~.1] 

[B.2] 
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where the kernel K(O; X) is given by 

1 (_02)f0' ( ~ )  
g(0;  l )  = - 2 tan ~ P(¢'; l )  dgJ, [B.3] 

sin 0 tan a 

and P(~;X) is defined by 

P(¢;  Z) = P ( ¢ ;  Z) +p(2n  - g,; X)- [B.4I 

We note that the kernel satisfies the constraint 

f~g(o; Z) = l ,  [B.S] dO 

independently of X, and is positive for all values of 0 and ~. 
We consider the space of integrable functions on [0, hi, i.e. L'  ([0, n]) subject to the constraint 

f f  n(X) dx = [B.6] 1. 

In this space we consider the operator ,t defined by 

~ K(O; Z ) ~l(X) dz, [B.7] ( t  7)(0) 

which maps the space into itself. 

We also define the functions L(O) and M(O; X) by 

L(O) = r~n K(O; )C) [B.8I 
~o, ~l 

and 
M(O; Z) = K(O; •) - L(O), [B.91 

so that L(O) and M(O; X) are positive for all values of 0 and X and satisfy the relations 

fo "L(O)dO =1 0 > [B.IOI 

and 

f~ M(O; )~)dO = 1 -1  >0 .  [B.I 1] 

Using these relations it follows that 

- Ot 'h)(O)]] = fo l f : K(O; x ) (X ) - n'(x )l dxldO, 

Hence the operator d is a contraction and using the contraction mapping principle it follows that 
there exists a unique solution to [B. 1] subject to the constraint [B.6]. However, noting that provided 
there is some deposition at the top of the tube q (0) ~ 0, it follows by renormalization that there 
exists a unique solution to [13.1] subject to the boundary condition [B.2]. 

Remembering that 

APPENDIX C 

Numerical Solution Scheme for [91] 

p(e;X) q(x)dx -~ P(O;X) ~(x)d l ,  [cA] 



MODELLING OF HORIZONTAL ANNULAR TWO-PHASE FLOW 197 

where 

we may write [91] as 

with 

P(O; X) =p(0 ;  Z) +p(2x  - 0; Z), [c.21 

d~ [t/(O) sin O] + ,~tl(O) ffi ~. f: P(O; Z) ~I(X) dz [c.31 

~/(0)---1 at 0 = 0  and 0~<0,~f~<~. [C.4] 

The range [0, ~] is subdivided into N intervals of length 6 = ~/N and the approximate numerical 
solution to [C.3] will be obtained at the (N + 1) grid points 

x 
0,=(i--I)6, i = 1 , 2  . . . . .  N + I .  

We approximate the derivative term in [91] by its finite-difference approximation centred on the 
point 0,+lfz = (i - ½) 6, 

d [J?(0) sin 0] ~ rh+l sin 0,+1 - 7, sin 0 ,  
d-O 6 , i = 1 . . . . .  N, [C.5] 

where t/i = t/(O,), and approximate the integral term by using the trapezium rule, again centred on 
0,+1/2: 

P(O;~f)ff(x)dx =~. P¢jrb+ P,,j+jrb+~+ P,+~,jrb+ P,+~,j+~rb+~ , 

where P~j = P(O,, Xj). 
The finite-difference approximation to [(2.3] now becomes 

rh+, (sin 0,+, + ~ )  -- q, (sin O, -- ~ )  

~ ~'~2I~I [rIj+I (P,+I,j+I + P,,j+ I) + ~j(P,+I,j + P,,j) ], 

There are N equations 
independent, because 

i = l . . . .  N. [C.6"] 

in the N unknowns n2.. .  t/t¢+~ but the equations are not linearly 

6 N  
~,~ (P~j+ P,+,.j)= I, Yj. [C.7] 

One further equation is required and we obtain it by assuming that d/d0 (~/(0) sin 0) ~ 0  as 0 -*0. 
This assumption enables us to derive the further equation 

i" 3.6 ~ i'p tb+,), '.''+P'+' [c.8] 

from the limiting form of [C.1] as 0- ,0 .  
The above finite-difference equations are now cast in the form 

with 

Ao. X J = Bj, i,j --- 1 .. . .  , N, [C.9] 

Xj = nj+l, [C.10] 

B i = T ' I ~ I  el+l,l'df- ekl , i -~. 2 . . . . .  N ,  [ C . | l ]  

B, -- ~ (1 + ,l) - P,.,, [¢.12] 
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Aty = -- - -  

and 

where 
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2622(P,,j+l+Pi+,,/+,)+(sinO,+2-~62)6,, j 

~.62/ 
~ = 2  . . . . .  N, [C.13] 

Atj = 2 Pl,:+t - PIj+t &j,,v, [c.14] 

~M,L--"~O if M # L  [C.15] 

= 1  if M f L .  
These equations are then solved using the Harwell Subroutine Library Program MA21. A similar 
scheme using simple backward differences has also been used but the above scheme is more 
accurate.  


